Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus.

نویسندگان

  • Susan Strohschein
  • Kerstin Hüttmann
  • Siegrun Gabriel
  • Devin K Binder
  • Uwe Heinemann
  • Christian Steinhäuser
چکیده

Aquaporin-4 (AQP4) is the main water channel in the brain and primarily localized to astrocytes where the channels are thought to contribute to water and K(+) homeostasis. The close apposition of AQP4 and inward rectifier K(+) channels (Kir4.1) led to the hypothesis of direct functional interactions between both channels. We investigated the impact of AQP4 on stimulus-induced alterations of the extracellular K(+) concentration ([K(+)](o)) in murine hippocampal slices. Recordings with K(+)-selective microelectrodes combined with field potential analyses were compared in wild type (wt) and AQP4 knockout (AQP4(-/-)) mice. Astrocyte gap junction coupling was assessed with tracer filling during patch clamp recording. Antidromic fiber stimulation in the alveus evoked smaller increases and slower recovery of [K(+)](o) in the stratum pyramidale of AQP4(-/-) mice indicating reduced glial swelling and a larger extracellular space when compared with control tissue. Moreover, the data hint at an impairment of the glial Na(+)/K(+) ATPase in AQP4-deficient astrocytes. In a next step, we investigated the laminar profile of [K(+)](o) by moving the recording electrode from the stratum pyramidale toward the hippocampal fissure. At distances beyond 300 μm from the pyramidal layer, the stimulation-induced, normalized increases of [K(+)](o) in AQP4(-/-) mice exceeded the corresponding values of wt mice, indicating facilitated spatial buffering. Astrocytes in AQP4(-/-) mice also displayed enhanced tracer coupling, which might underlie the improved spatial re- distribution of [K(+)](o) in the hippocampus. These findings highlight the role of AQP4 channels in the regulation of K(+) homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of vario...

متن کامل

The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus.

Astrocytic gap junctions have been suggested to contribute to spatial buffering of potassium in the brain. Direct evidence has been difficult to gather because of the lack of astrocyte-specific gap junction blockers. We obtained mice with coupling-deficient astrocytes by crossing conditional connexin43-deficient mice with connexin30(-/-) mice. Similar to wild-type astrocytes, genetically uncoup...

متن کامل

Effect of Chronic Intracerebroventricluar Administration of Lipopolysaccharide on Connexin43 Protein Expression in Rat Hippocampus

Background: Hippocampal damages, which are accompanied by inflammation, are among the main causes of epilepsy acquisition. We previously reported that chronic intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS) modulates epileptogenesis in rats. There is a network of gap junction channels in the hippocampus that contribute to epileptogenesis. Gap junction channels are formed ...

متن کامل

Gap junctions of the hippocampal CA1 area are crucial for memory consolidation

Introduction: Gap junctions are specialized cell–cell contacts between eukaryotic cells through which they communicate. This type of communication has the potential to modulate memory process. We evaluated the effects of the gating of the hippocampal CA1 area gap junction channels on memory consolidation, using passive avoidance task. Materials and Methods: 72 adult male Wistar rats were distri...

متن کامل

Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia.

Neocortical freeze lesions have been widely used to study neuronal mechanisms underlying hyperexcitability in dysplastic cortex. Comparatively little attention has been given to biophysical changes in the surrounding astrocytes that show profound morphological and biochemical alterations, often referred to as reactive gliosis. Astrocytes are thought to aid normal neuronal function by buffering ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 59 6  شماره 

صفحات  -

تاریخ انتشار 2011